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Abstract: The local states (LS) method is an approximate technique proposed by Meirovitch (Chem. Phys. Lett. 1977, 45, 
38) for estimating the entropy from a sample of conformations. The method is further developed and extended here to molecular 
dynamics samples of the cyclic peptide cyclo-(Ala-Pro-D-Phe)2 in vacuum and in the crystal environment. This is the first 
time the LS method has been applied to a peptide with side chains which is described by flexible geometry. The method enables 
one to obtain an approximation P1 of the sampling probability of conformation i where P1 is expressed as a product of transition 
probabilities, which relate a dihedral or a valence angle to a number of preceding angles in the chain. This set of angles is 
called a local state. The values of P, define approximations for the entropy 5 (5 ~ In P1) which together with the energy 
lead to upper and lower bounds for the free energy. The LS method is general; i.e., it can be applied to samples of any 
conformational state (e.g., a random coil) and is not restricted to a molecule undergoing small harmonic conformational fluctuations. 
Thus, the relative stability of states of considerable structural difference can be obtained from the corresponding free energies. 
In this work we investigate some effects of environment on cyclo-(Ala-Pro-D-Phe)2 and, in particular, calculate the reduction 
in entropy, AS, in going from vacuum to the crystal. We find that 7"AS = T[5(vacuum) - S(crystal)] = 9.4 ± 0.8 kcal/mol 
where T ~ 300 K is the absolute temperature. Calculation of AS is important in biological processes such as the binding 
of a peptide to a receptor, which involves a change of environment. We argue that under certain conditions the method is 
expected to be efficient even for large proteins. 

I. Introduction 
Polypeptides and proteins are known to have a large number 

of metastable states, i.e., states that correspond to relatively low 
Helmholtz free energy, F. An important theoretical goal is to 
calculate this free energy, which constitutes the criterion of sta­
bility. There are a variety of applications for which the ability 
to calculate free energy is useful. For example, in studying 
protein-ligand interactions, one wants to know the free energy 
changes involved in the binding process, or the relative free energy 
of binding of different ligands (see refs 1-3 and references cited 
therein). It is also important to be able to compare the relative 
free energies of different conformational states of a peptide (such 
as an a-helical or a /3-turn structure) in different environments 
(in vacuo, in solution, in an enzyme active site, etc.). However, 
with the commonly used computer simulation techniques, Me­
tropolis Monte Carlo4 and molecular dynamics,5,6 calculation of 
the entropy, S (and hence F), is difficult. This stems from the 
fact that these methods are of a dynamical type (i.e., one starts 
from some conformation which evolves in time), and they therefore 
do not provide the value of the sampling probability, P, of a 
conformation, that leads to the entropy, S (S ~ In P). Thus, in 
many studies, the energy, E (which can be obtained easily), rather 
than F, has been adopted as an approximate criterion of stability. 

Several approximate methods for calculating the entropy of 
macromolecules have been proposed. G5 and Scheraga7,8 de­
veloped a method which, in principle, is based on a normal co­
ordinates analysis (using classical statistical mechanics) for 
calculating the conformational entropy of macromolecules un­
dergoing small (i.e., harmonic) fluctuations around their stable 
state (e.g., the a-helical state of a polypeptide). The method was 
applied to several polypeptides910 modeled by rigid geometry, i.e., 
fixed bond lengths and bond angles. They also calculated the 
entropy of a polypeptide in its random-coil state7 at the 8 point,9"12 

i.e., by neglecting most of the excluded volume effect. Hagler 
et al.13 introduced the Einstein harmonic oscillator approximation 
to the calculation of the entropy of different conformational states 
of peptides as well as to the effects of residue substitutions in 
different positions. They also demonstrated the importance of 
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flexibility, i.e., of allowing for the relaxation of bond lengths and 
angles in determining conformational stability. Karplus and 
Kushick14 have proposed to calculate the covariances of the internal 
coordinates directly from a molecular dynamics or a Monte Carlo 
simulation (the quasiharmonic approximation13) and applied their 
method to butane and decaglycine (see also refs 16-18). These 
approximate treatments pertain only to the two extreme cases of 
relatively small (in the harmonic or quasiharmonic cases) and very 
large (the random coil calculation) conformational fluctuations, 
and are not applicable to states with intermediate chain flexibility. 

More recently, powerful thermodynamic integration and per­
turbation techniques119"22 have been introduced which enable one 
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to obtain not only a difference in free energy, AF, of a confor­
mational change, but also the difference in free energy due to 
chemical changes. Thus the relative stabilities of large systems 
such as protein-ligand complexes in water, and various mutations 
of amino acid residues, can be determined.1'23"29 This category 
also includes the absolute free energy technique proposed by 
Stoessel and Nowak30 (see also a related method by Rojas et al. 
inrefl8). In principle, these methods are rigorous. In practice, 
however, they are limited to relatively small conformational or 
chemical changes; otherwise, the required number of integration 
steps (known as "windows") becomes large and the process in­
tractable. In addition, it is difficult to estimate the effect of the 
sample size at each integration step on the statistical error, which 
leaves uncertainty as to the precision of the result.1 

An alternative approximate procedure for calculating the en­
tropy, called the local states (LS) method, has been proposed by 
Meirovitch.31 With this method the value of the sampling 
probability P can be obtained approximately from the frequencies 
of occurrence of the so-called local states (for a polypeptide a local 
state is a set of values of neighboring dihedral and valence angles 
which define a local conformation of the chain). This procedure 
was originally developed to calculate the entropy of Ising and 
lattice gas systems simulated by the Monte Carlo technique;31"33 

later, it was extended to polymer chains35"37 and to polypeptides.34 

In the latter study, the LS method was applied to a model of 
decaglycine without solvent, where the molecule, described by the 
potential energy function ECEPP,38,39 has rigid geometry. It was 
found that the a-helical state is more stable, i.e., has lower free 
energy, than the hairpin state.34 The method has also been used 
recently in studies of the properties of elastin.40 The LS method, 
in contrast to the methods mentioned above,7,8,1 U 4 is general in 
the sense that it can be applied efficiently not only to stable states 
but also to the random coil and other chain flexibilities. This 
enables one to compare the stability of structures having large 
conformational differences. 

In this work the LS method is further developed by applying 
it to the cyclic peptide cyclo-(Ala-Pro-D-Phe)2 in order to assess 
the effect of environment on the free energy. Here, we also 
generalize the method to handle side chains in the local states 
definition, as well as extending it to calculate free energy from 
a system simulated with molecular dynamics; i.e., the molecule 
is described by flexible geometry. The structures of this molecule 
in the crystal and in solution have been determined by X-ray 
crystallography41 and NMR.42 This peptide has also been studied 
by theoretical procedures in vacuum (i.e., in the absence of solvent) 
and in the crystal by Hagler et al.43,44 and Kitson and Hagler.45,46 
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In the latter works one of the main objectives was to investigate 
the effects of environment on the properties of the peptide. This 
is important since biological processes, such as the binding of 
peptides to receptors, involve a change of environment. Here, we 
explore environmental effects further by estimating, for the first 
time, the reduction in the conformational entropy of cyclo-
(Ala-Pro-D-Phe)2 in going from vacuum to the crystal. For 
comparison we have also calculated this change in entropy using 
the harmonic approximation based on a normal mode analysis.13 

II. Theory 
For the sake of simplicity the theory of the local states method 

will be described as applied to self-avoiding walks (SAWs) of N 
steps (bonds) on a square lattice; thus, the excluded volume in­
teraction is taken into account. The SAWs start from the origin 
of the lattice, and finite interactions (e.g., attractions) may be 
defined between the chain steps. Such lattice models have been 
used to describe proteins.47"50 Only small modifications, which 
will be discussed in section II.E, are required for a continuum 
model of a peptide, i.e., a model in which the lattice restriction 
is removed. 

A. Thermodynamic Functions. Let us define thermodynamic 
functions for self-avoiding walks on the lattice. The partition 
function, Z, is given by 

Z = Lexp(-£,/A:Br) (1) 

where / runs over the ensemble Q of all the possible configurations 
of the chain, E1 is the energy of configuration;', kB is the Boltzmann 
constant, and T is the absolute temperature. The Boltzmann 
probability of SAW i is, therefore, 

Pf = exp(-£,/fcB7yZ (2) 

and the statistical average of any microscopic property X1 (such 
as the energy E1) is given by, 

X= (X)= ZPfX1 (3) 
iga 

The entropy, S, and the Helmholtz free energy, F, can be formally 
expressed as statistical averages, 

5 = -*B L PfInPf (4) 
/en 

and, from eqs 3 and 4, 

F = E-TS= LP1
0E1 - n-kvZP,6 In Pf] = 

/en /gn 
ZPf[E^k3TInPf] (5) 
/en 

For long SAWs or realistic models of a polypeptide, exact 
calculation of the statistical average, X, of a property is intractable 
because of the tremendous number of possible configurations. 
However, X can be estimated in the following way: one selects 
n SAWs from the ensemble, according to their Boltzmann 
probability Pf (eq 2), and then calculates the arithmetic average 
X, 

X=n'Z.Xm (6) 

where /(O is the nh SAW selected; for a large sample size n, X 

(43) Hagler, A. T.; Moult, J. Nature 1978, 272, 222. 
(44) Hagler, A. T.; Moult, J.; Osguthorpe, D. J. Biopolymers 1980, 19, 

395. 
(45) Kitson, D. H.; Hagler, A. T. Biochemistry 1988, 27, 5246. 
(46) Kitson, D. H.; Hagler, A. T. Biochemistry 1988, 27, 7176. 
(47) Taketomi, H.; Ueda, Y.; Go, N. Int. J. Pept. Protein Res. 1975, 7, 

445. 
(48) Kolinski, A.; Skolnick, J.; Yaris, R. Proc. Natl. Acad. Sci. U.S.A. 

1986, 83, 7267. 
(49) Lau, K. F.; Dill, K. A. Macromolecules 1989, 22, 3986. 
(50) Covell, D. G.; Jemigan, R. A. Biochemistry 1990, 29, 3287. 



5388 J. Am. Chem. Soc, Vol. 114, No. 13, 1992 Meirovitch et al. 

is expected to approach X. It should be pointed out that the 
Boltzmann probability, P1

0, which appears in eq 3, does not appear 
in eq 6 because the self-avoiding walks, i(t), in the sample are 
already distributed according to P,B. In order to understand the 
LS method, it is important to note the distinction between X in 
eq 3 (the ensemble average) and its estimator X (eq 6); we shall 
always use the bar to denote an estimation. The accuracy of such 
an estimation depends on the standard deviation ax of the property 
X 

^ + 2 = ? v = ? 
vk+2 

Ox=[ZPf(X- x,y ,1211/2 (7) 

For extensive properties, such as the energy, <rx ~ N1 /2, where 
N is the number of steps in each SAW.51 The convergence of 
X to X, however, is determined by ox which depends on both N, 
and the number of configurations in the sample, n;52 for an un-
correlated sample (see below) it is ax = ox/n

1/2 = (N/n)l/2, i.e., 
ox increases with the system size N and decreases with the sample 
size n. The free energy F, in contrast to the energy, however, is 
a statistical average with zero fluctuations,53 i.e., oF = 0. 

Assume now two states of a molecule defined over different 
regions of phase space J)1 and fi2 (e.g., a helical and a /3-turn state 
of a peptide) with partition functions Z1 and Z2, free energies Fi 
and F1, and average energies E1 and F2 , respectively. In order 
to be able to estimate the difference in energy AE = Ex-E2 with 
a good precision, one should generate two uncorrelated samples, 
each of size n such that oEj, oEl« AF or A(N/n)1/2 « AF, i.e., 
n » A2Nf(^E)1, where A is an energy constant. For example, 
a molecular dynamics study of the protein Streptomyces griseus 
Protease A (SGPA)54 (181 amino acid residues) shows that cE 

(eq 7) is approximately 200 kcal/mol; this means that in order 
to obtain E with precision of ± 1 kcal/mol (i.e., oE = oEn'i/2 ~ 
20On"1/2 < 1 kcal/mol), an uncorrelated sample of ~40000 
conformations is required. It should be noted, however, that the 
conformations in Monte Carlo and molecular dynamics samples 
are highly correlated, and, therefore, the sample size, n, required 
is much larger than the above estimate. (The correlation range 
for a quantity X1 is defined as the time t for which the autocor­
relation function of Xt becomes 0. Therefore, the number of 
uncorrelated conformations in a correlated sample may, to a good 
approximation, be given by n' = n/t rather than «.) Indeed, for 
large protein-ligand complexes it was found impossible, because 
of the large energy fluctuations, aE, and because the samples were 
too small, to distinguish between the energies of different states 
(e.g., a mutated versus a wild type protein; see, for example, results 
for the energy in Table III of ref 29). On the other hand, in 
principle, the free energies, F1 and F2, of such states and hence 
the difference, AF = F1 - F2, can be calculated exactly from two 
samples, each of size n = 1 only. As discussed in the Introduction, 
it is, however, difficult in most cases to calculate F exactly. Thus, 
the local states method enables one to define an approximate free 
energy functional, FA (see below). The standard deviation aF

A 

of this property will be larger than zero; however, aF
A, is expected 

to decrease monotonically as the approximation is improved; 
therefore aF

A constitutes a criterion for the extent of approximation 
in FA. Obviously, for a good enough approximation, one would 
expect oF

A < aE. 

The local states method is based on the concepts of the scanning 
simulation method,55,56 proposed by Meirovitch, which is a step-
by-step procedure for generating polymer chains. We shall, 
therefore, first describe the scanning method. 

B. The Exact Scanning Procedure. Unlike molecular dynam­
ics5'6 and Metropolis Monte Carlo,4 which are dynamical type 
methods, i.e., the conformation of the system evolves with time 
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Figure 1. The possible directions available at step k + 2 from which a 
backbone direction vk+2 and a branch direction /i t+2 will be selected 
simultaneously with the scanning procedure (the future self-avoiding-
walks, K4+3, ..., uN are not shown). The backbone and the branch are 
denoted by single and double lines, respectively. The branch is of Q = 
3 steps. The three possible directions of nk+2 and vk+l are denoted by 
dashed lines. Obviously, the choice n.k+2 = 3 and vk+2 = 1 is forbidden. 

in a correlated manner, the scanning method is a step-by-step 
construction procedure based on transition probabilities55,56 in 
which the conformations in the sample are statistically inde­
pendent. Let us describe the method as applied to self-avoiding 
walks of N steps (without finite interaction energy) on a square 
lattice. The first step, which starts from the origin, is determined 
(using a random number) in one of the four possible directions, 
v, each with an equal probability of 1/4. In the next steps of the 
process (k > 1), the transition probability for selecting a direction 
vk becomes a function of the k - 1 previous steps, vx,..., vk_x. We 
denote by p(vk\vk-x,...,vx) the probability of selecting a direction 
vk at the Arth step, given that the previous k - 1 steps are V1,..., 
vk.x. These transition probabilities are calculated by generating 
(or "scanning") all of the possible so-called "future SAWs" that 
begin with each of the directions vk. These future SAWs are the 
possible continuations of the chain to the full length N, in future 
steps (i.e., k, k + 1,..., AO- The number of future SAWs starting 
in each direction is counted and the larger this number for direction 
vk (vk = 1, 4), the larger is the value of p(pk\vk.x,...,vi) (this 
procedure has been extended to models with interaction energy 
as well.) The direction vk is then selected with the help of a 
random number according to the transition probabilities and the 
process continues. 

Once self-avoiding walk i of iV steps has been constructed, one 
knows its construction probability F, 

P{~ P? = \f\p(vk\vk-x,...,vx) (8) 

which is the product of the TV sequential transition probabilities 
with which the directions vx,..., vN have been chosen. One can 
show that P1 (eq 8) is exact; i.e., it is equal to the Boltzmann 
probability55,56 (eq 2). Since the number of SAWs increases 
exponentially with increasing N, the exact scanning procedure is 
impractical for large N. 

The scanning method has also been extended to branched 
polymers.57 If the branching points and the branch lengths are 
predefined (such as in a protein), the future scanning should 
encompass all possible backbone and branch conformations. In 
this case, however, the transition probabilities are more complex. 
If a branching point is reached at step k, the directions of two 

(57) Meirovitch, H. /. Phys. A 1987, 20, 6059. 
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bonds, one of the backbone, vk+q, and the other of the branch, nk+q, 
should be determined at step k + q (0 < q < Q- 1) until the whole 
branch of Q steps has been constructed (see Figure 1). However, 
if a new branching point happens to occur before the previous one 
has been completed, the backbone and the two branches will be 
generated simultaneously. For the case of a single branch, the 
transition probability at step k + q is denoted by 

P{Vk+q^k+q\Vk+q-\,-,>>\,Hk+q-\>-^k) ( 9) 

In summary, for our purposes it is important to realize that 
the scanning method is based on transition probabilities which 
depend on all the previous steps. In contrast to the Metropolis 
technique, where the value of Pf is unknown, the exact scanning 
method provides this value (eq 8), and hence the entropy, 5, which 
is related to In P,B, is known as well (see eq 4). In this work we 
shall not apply the scanning method, but shall use its concepts 
as the basis for the local states method. 

C. The Local States Method: Application to Monte Carlo or 
Molecular Dynamics Realizations. Suppose that the entropy is 
to be calculated from a sample of n self-avoiding walks of TV steps 
each. Further assume that these n configurations have been 
generated with the Metropolis method4'58'59 (or, in principle, with 
any other simulation technique, such as molecular dynamics). The 
local states (LS) method is based on the fact that the properties 
of a large sample at equilibrium are independent of the simulation 
technique with which it has been generated. That is, although 
two equilibrium samples generated with different simulation 
techniques are very unlikely to be identical, they lead to estimates 
of average properties, X (see eq 6), that are equal to within a 
statistical error that decreases with increasing sample size n. 
Therefore one can assume^'3* that the sample of SAWs has been 
generated with the scanning method, rather than by the actual 
Monte Carlo technique. This is the key to the local states method 
described here. This then enables one to reconstruct the transition 
probabilities of the scanning method from the frequencies of 
occurrence of the various configurations of the partial SAWs (vk, 
..., IZ1) (k = 1, AO- Such configurations are called local states.31 

Thus, for a given local state, one can count the number of times, 
n(vk, vk.{, ..., V1), that vk is preceded in the sample by the sequence 
v\...i>k-\, and divide by n(vk.{,..., V1), the total number of occur­
rences of Vi-V1C-I, defining the transition probability, 

P("/tK-iv,>'i) si n{vhvk_u...,Vi)/niv^,...,V1) (10) 

For a large sample [which means large values of n{vk,..., V\)], 
the values olp(vk\vk.\,..., vx) (eq 10) will approach the values of 
the corresponding transition probabilities of the exact scanning 
method. Having calculated the transition probabilities from the 
sample, the probability of each conformation can then be calcu­
lated using eq 8. However, reconstructing the transition proba­
bilities of the exact scanning method is impractical for long chains 
because of the very large number of possible local states. 
Therefore, one can define approximate transition probabilities for 
the local states (vk, ..., vk.b) (k = I, N), which depend on only 
b previous steps (rather than all k - 1), where b is small (b is called 
the correlation parameter), i.e., 

P{vk\vk-u-,vk-b) = n{vk vk.b)/n(vk.u...,vk.b) (11) 

Notice that for k < b the transition probability is exact since all 
of the {k - 1) previous steps are taken into account. [We shall 
also use approximations based on b = 0 (i.e., no correlations are 
taken into account); the corresponding transition probabilities are 
denoted by p(vk, b = 0).] Thus, the calculation of construction 
probabilities P/(b) (see eq 12 below) is carried out in two stages; 
first, a set of transition probabilities for the various local states 
is obtained and then the N transition probabilities corresponding 
to configuration / in the sample are determined and the approx­
imate construction probability Pt(b) assigned to it (see eq 8) is 
calculated 

P,{b) = \f[p(vk\vk-i Vt+) (12) 

where the factor 1/4 is the transition probability for the first step 
on a square lattice with coordination number 4. 

One also has to define approximate transition probabilities for 
branched chains. As has been discussed in section II.B, at step 
k + q, the directions vk+q and nk+q of the backbone and the branch, 
respectively, should be determined simultaneously. However, it 
is more convenient to define separate transition probabilities for 
the backbone and the branch. Thus, for the pairs (j^, nk) and 
(vk+[, nk+[) the transition probabilities (for a given value of the 
correlation parameter b) can be factored as follows (using the 
Bayes formula): 

P("k^k\Vk-U-^k-b) = P(Vk\Vk-l,-,"k-b)p(flk\vk,...,Vk.b) (13) 

P("*+l./*t+ll"t./**.-.»'t-(ft+2)) = 

P(vk+i\vk,nk,...,vkHb+2))p(^k+i\vk+i,fik,vk,...,vk.(b+2)) (13a) 

where a similar factorization can be defined for a general pair 
of backbone and branch steps, (vk+q, iik+q). For cyclo-(Ala-
Pro-D-Phe)2 treated here, the values of b studied are relatively 
small, b < 3 for the backbone angles and b < 1 for the side chains. 
We also use an approximation in which correlations are not taken 
into account (i.e., b = 0, for both backbone and side chains; see 
section III.A). 

D. Approximations of the Free Energy. Having described the 
way in which the approximate construction probabilities, P1(Jb), 
can be calculated, we shall now discuss approximations to the free 
energy that can be obtained from these probabilities. We should 
first note that with the exact scanning method the whole future 
is searched, and therefore self-intersecting chains cannot be 
generated. However, a step-by-step construction procedure based 
on the approximate transition probabilities (eq 11) can lead to 
self-intersecting random walks (i.e., the chain can fall on itself, 
which is an unphysical state). This means that the approximate 
probability P,(b) defined above (eq 12) is not normalized over the 
ensemble of SAWs Q, but over a larger ensemble that also includes 
self-intersecting configurations. Therefore, G, defined by 

G= ZP1(A) < 1 (14) 

is less than 1 and a normalized probability, P,(b), for the whole 
ensemble of self-avoiding walk configurations Q is 

Pm = PHb)/G (15) 

If a step-by-step construction procedure based on the approximate 
transition probabilities given by eq 11 is used to generated SAWs, 
one can estimate G by the ratio of the number of SAWs completed 
successfully to the number started. However, G cannot be obtained 
from a sample generated by the Monte Carlo method since this 
sample includes only "successful" SAWs. We therefore study the 
entropy functional SA which depends on P,(b) rather than on P/(b), 

SA = -kBZP? In P,(b) (16) 
fen 

Using Jensen's inequality,3660 SA can be shown rigorously to 
overestimate the correct entropy S (eq 4), i.e., 

SA > S (17) 

The corresponding free energy FA is based on the correct average 
energy E (eq 3) and 5A, 

FA = E PiHE1 + kBT In P,(b)] = E-TSA (18) 

which, due to eqs 5 and 17, satisfies the relation 

FA < F (19) 

SA (eq 16) and FA (eq 18) are statistical averages defined with 
the Boltzmann probability P?; this definition is chosen because 

(58) Verdier, P. H.; Stockmayer, W. H. J. Chem. Phys. 1962, 36, 227. 
(59) Kremer, K.; Baumgartner, A.; Binder, K. J. Phys. A. 1982,15, 2879. 

(60) Prazen, E. Modern Probability Theory and its Application; Wiley: 
New York, 1968. 
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the sample is generated with P1
8 by the Monte Carlo procedure. 

Thus FA can be obtained from a sample of n chains generated 
by the Monte Carlo procedure by calculating the arithmetic av­
erage FA, 

FA=*n- EE11 w 
+ kBT In Pm(b) = E - TSA (20) 

Notice that the transition from the ensemble average FA (eq 18) 
to its estimate FA is the same as that from X to X in eqs 3 and 
6, respectively. 

Another free energy functional, F8, has also been introduced35 

F8 = L Pt(V)[E1 + kBT In P ,(b)] = EB - TS* (21) 

This quantity is expected to provide an upper bound for the correct 
free energy F as explained below. If In Pi(V) in eq 21 is replaced 
by In P,'(b) (eq 15), the natural log of the normalized probability 
Pi(V), F6 becomes a free energy functional, F^(P-'(b)), defined 
with a single probability distribution Pf(b) [rather than two 
different probability distributions used in defining both FA (eq 
18) and F8 (eq 21)]. It is known from statistical mechanics (the 
minimum free energy principle61,62) that such a functional, i.e., 
EPi(V) [E1 + kBT In Pl(V)] is minimal for the Boltzmann 
probability, i.e., when Pf(V) = P,8. Therefore, FB(P/(b)) over­
estimates the correct F (eq 5), i.e., FB(Pi'(b)) > F. However, as 
has already been pointed out, it is impossible to obtain the nor­
malized probability Pf (b) from the Monte Carlo sample, and 
therefore F^(Pf(V)) cannot be calculated as well. On the other 
hand, F8 (eq 21) defined with In P1(V) can be calculated; however, 
for this quantity it can only be shown36 that 

F8 2: FA (22) 

However, in practice F8 still constitutes a very useful quantity 
since for all the models studied thus far F8 has been found to be 
an upper bound of the correct value,34"37 F. In part of these 
systems, i.e., SAWs on a square and a simple cubic lattice (which 
are also enclosed in a small volume36) and the continuum model 
of a freely jointed chain of hard disks,37 the correct free energy 
F has been obtained by other techniques. However, it should be 
pointed out that in order to determine that F8 is an overestimation, 
one does not necessarily have to know the value of F. This can 
be achieved by verifying that the results for F8 decrease mono-
tonically as the approximation improves (i.e., as the correlation 
parameter b is increased). In fact, the above-mentioned studies 
showed that, for good enough approximations, F8 and FA deviate 
approximately equally from the correct free energy F (eq 5). In 
this case their average, FM, 

FM _ ( F A + pBy2 (23) 

becomes a better approximation for F than either one of them 
individually. 

1. Estimation of FB by Importance Sampling. The estimation 
of the approximate free energy F8 has been discussed before.34,36,37 

F8, in contrast to FA, is a statistical average defined with the 
probability Pf(V), which differs from the sampling probability 
F,8. Therefore, F8 cannot be estimated straightforwardly from 
the sample in the same manner as FA (see eq 20). F8 can be 
estimated,34"37 however, in a more elaborate way by two proce­
dures, importance sampling63,64 and the generalized Monte Carlo 
procedure4,52 suggested by Schmidt.65 To apply importance 
sampling (IS), one has first to express F8, which is defined with 

(61) Gibbs, J. W. In Elementary Principles in Statistical Mechanics; Yale 
University Press: New Haven, CT, 1902; Chapter Xl. 

(62) Huber, A. In Mathematical Methods in Solid State and Superfluid 
Theory; Clark, R. C, Dermick, G. H., Eds.; Plenum Press; New York, 1968. 

(63) Kahn, H. In Symposium on Monte Carlo Methods; Meyer, H. A., 
Ed.; Wiley: New York, 1956; p 146. 

(64) Hammersley, J. M.; Handscomb, D. C. In Monte Carlo Methods; 
Methuen: London, 1964; p 57. 

(65) Schmidt, K. E. Phys. Rev. Lett. 1983, 51, 2175. 

Figure 2. Schematic representation, as a function of energy E, of the 
exact Boltzmann probability, PB (eq 2), and the approximate probability 
P\b) (eq 15). The most probable conformations with respect to P9 

belong to the tail of P\b). (Note that the actual probability distributions 
will not conform to the symmetrical Gaussian distributions illustrated 
here.) 

the approximate probability Pf(b), as an average defined with 
the Boltzmann probability F,8 (which is the sampling probability). 
This average can be estimated from the Monte Carlo sample of 
size n by (see refs 34-37), 

F8OS) = LF,(()(i)exp(F/(0/fcBr)[F 
i(t) + ^ B 

T\nPm(b)]/ 
tPKl)(b) exp(Em/kBT) (24) 
i = i 

where the transformation from F8 to Ffl(IS) is like that of A" (eq 
3) to X (eq 6). Thus, for each configuration i(i) of the Monte 
Carlo sample one knows the energy £,(I) and the probability Pm)(V). 
The expressions in the numerator and denominator are calculated 
and summed up to give F^(IS). 

It should be emphasized that the convergence of F^(IS) to F8 

is, in general, much slower than that of FA to FA (eqs 18 and 20), 
which means that a larger sample n is required for F^(IS) than 
for FA. This stems from the fact that the expressions in the 
numerator and denominator of eq 24 are not extensive [i.e., they 
are not proportional to the number of steps (or atoms) N, such 
as for a usual thermodynamics quantity (e.g., the energy), since 
they consist of the probability Pj(b) and the exponential term, 
which behaves as exp(-A0]. If the distributions P,B and P','(b) 
differ significantly, very large sample size n is needed for F^(IS) 
to converge to F8 (see discussion following eq 7). This stems from 
the fact that the conformations which contribute significantly to 
F8(IS) (i.e., have large values of P m'(V)) (recall that the prob­
ability distribution Pf(V) is related to Pt(b), which appears in eq 
24, by the factor G (eq 15)) belong to the tail of the sampling 
probability distribution, P1*. As P1(V) —• F,8, the estimation of 
F8 by F^(IS) becomes more efficient since more conformations 
in the sample contribute significantly to F8 (see Figure 2). The 
effective sample size for F8 can be obtained by the Schmidt 
procedure discussed in the next section. 

2. Estimation of F8 with the Schmidt Procedure. In the 
previous section we have shown that F8 can be estimated by 
expressing it as a statistical average defined with the sample 
probability P1* (eq 24) rather than P,'(b) (eq 21). With the 
Schmidt procedure, on the other hand, the process is reversed; 
i.e., one first changes the original Monte Carlo sample to one 
distributed with the approximate probability Pf (b) from which 
F8 can be estimated directly using eqs 21 and 6. Thus, the 
Schmidt procedure65 enables one to extract from a sample gen­
erated with the correct F,-8 (the unbiased sample) an effectively 
small sample selected with Pf(V) (the biased sample). That is, 
a sample is obtained that is representative of that which would 
have been obtained if the original simulation had generated the 
sample according to Pf(V) rather than F,8. F8 can then be es­
timated straightforwardly from the biased sample. The procedure 
is carried out as follows. The first conformation i(t = 1) of the 
given unbiased Monte Carlo sample is always accepted for the 
biased sample. The second conformation i(t = 2) is accepted with 



Local States Method for Estimating Entropy of Polypeptides J. Am. Chem. Soc, Vol. 114, No. 13, 1992 5391 

1 

Pf -

P;(b) a 

2 

b 

a 

3 

C 

C 

4 5 

d e 

C C 

6 

f 

f 

7 

g 

f 

a 
h 

h 

Figure 3. The Schmidt procedure. An original sample of n = 8 different 
conformations has been obtained with an exact probability P,B (eq 2). 
After carrying out the Schmidt procedure, only «accept = 4 different 
conformations, a, c, f, and h, have been accepted and they appear with 
some degeneracy. For large n, the accepted sample would be selected 
with the approximate probability P{(b) (eq 15). 

probability A. Let us define A for general steps t and t + 1. First, 
we define AE(t, t + 1) as the difference in energy between suc­
cessive conformations in the sample divided by kBT (notice an 
error in ref 34, eqs 33 and 34) 

A£(J,/+1) = (£,(„.„ - Em)/ktT (25) 

Then 

,4[/(0,/(H-I)] = minf\,exp[AE(t,t+l)]PK,+»(b)/Pm(b)} (26) 

where P^t+i^b) and Pn,)(b) are the probabilities of the successive 
configurations obtained with eqs 11 and 12; b is the correlation 
parameter. Equation 26 describes a generalized Metropolis Monte 
Carlo procedure which satisfies the detailed balance condition. 
This equation is expressed in terms of F,(6) rather than P/(b) since 
the factor G cancels out in the ratio; see eq 15. The decision as 
to whether to accept or reject i(t = 2) is made with the help of 
a random number. If i(t = 2) is accepted (i.e., A is not smaller 
than the random number), the biased sample consists of the two 
conformations /(/ = 1) and i(t = 2); if the conformation i(t = 2) 
is rejected, the biased sample has the same conformation i(t = 
1) twice. This process continues for / = 3, etc., until all the 
conformations of the original unbiased sample have been tested 
and thus a biased sample [generated with Pf(Jb)] is extracted from 
the unbiased one (see Figure 3). This procedure differs from 
a usual Metropolis procedure4,52 in two respects. First, in a usual 
procedure one seeks to simulate the system with the Boltzmann 
probability Z*,8, whereas here we want the sample to be distributed 
according to the biased probability P-'(b); this gives rise to the 
following ratio Pnt+\)(b)/Plw(b) in eq 26 instead of Pfil+])/PKl) 
(=exp[-A£(r,/+l)]), which appears in a usual Metropolis pro­
cedure. Second, the expression exp[A£(/,H-l)] [(-Pf(,)/Pf(,+\))] 
(i.e., the ratio of the Boltzmann probabilities, eq 2) that appears 
in eq 26 is replaced by 1 in a usual Metropolis procedure. It is 
required here in order that the procedure satisfies the detailed 
balance condition, which guarantees the correct convergence. The 
efficiency of producing accepted conformations can be measured 
by the acceptance rate /?a, 

R. - n: accept /n (27) 

where niaxp{ is the number of chains accepted in the process. /?a 
would be expected to increase as the approximation improves; for 
the exact Boltzmann probability P,B, R^ = 1, i.e., the whole original 
sample is accepted. This can be seen by expressing P,(,+1)(6) and 
Pm)Ib) in eq 26 in terms of the energies £,(,+1) and EIW (see eq 
2), which gives rise to A = 1 for all t. Since /iaccept < n, the size 
of the original Monte Carlo sample, some SAWs in the accepted 
sample will appear more than once (on average an accepted SAW 
will be repeated n/niVxpi times). In the initial stage of the process, 
the acceptance rate Ra is relatively large since the first SAW 
considered, which is always accepted, is likely to be highly probable 
with P,B. It therefore will belong to the tail of the approximate 
probability P/(b) (see discussion on P in section HI.A and Figure 
2). As the process continues, structures that are more probable 
with respect to P{(b) are accepted, and therefore the acceptance 
rate /?a decreases until it becomes stable. This means that the 
SAWs accepted prior to the stabilization should be discarded. The 
free energy functional F6 is a statistical average defined with the 

biased probability P/(b) (eqs 15 and 21); it can, therefore, be 
estimated from the biased sample of accepted chains (selected 
with P/(b)) by the estimator P(A) [where (A) stands for 
"accepted"] in the same manner as the free energy functional FA 

is estimated by FA (see eqs 18 and 20) 

P(A) =n-'Z'Em + hT\nPm(b) (28) 

where £ ' denotes summation over the accepted biased sample. 
The effective sample size for P(A), which determines the sta­
tistical error, is the number of accepted SAWs, n^*. This should 
be compared to the larger sample size, «, available for FA. 
Schmidt's procedure, as well as importance sampling, is efficient 
only if the probabilities P/(b) and P* are sufficiently close to each 
other (see Figure 2). Otherwise, the acceptance rate becomes very 
small, which means that the sample size n needs to be extremely 
large. 

To summarize, the approximate free energies P and P are 
expected to approach F, the correct free energy, from opposite 
sides as the approximation improves, i.e., as P/(b) -* P*, providing 
lower and upper bounds for F. In practice, one calculates several 
approximations by using different values of the correlation pa­
rameter, b, and studies the convergence of the results for P , P , 
and P 1 , from which the best estimate of F is obtained. The value 
of nac«pt obtained from the Schmidt procedure constitutes a 
convenient measure for the statistical reliability of the estimate 
OfP. 

Another measure of the extent of convergence of FA is its 
fluctuation (eq 7) oyA, i.e., 

<rf
A = { L W A 

(€0 
E1-kBT In Pt(b)]2\l/2 (29) 

where P is the average value (eq 18), and the expression in square 
brackets is the deviation from the average for each /. We have 
already pointed out that the fluctuation of the exact free energy 
F is zero, whereas, generally, aF

A > 0. Therefore, one would expect 
that (7F

A -— 0 as the approximation improves. <rF
A can be estimated 

by aF
A, from the original Monte Carlo sample of size n where FA 

in eq 29 becomes FA (eq 20). 

* / = 1 " 
n,=i 

Em~ k*T\nPm(b)Y 
1/2 

(30) 

The various free energy and entropy functional described above 
are defined for discrete models. However, they also apply to 
continuum models (discussed in the next section) where the only 
change is that the probabilities P1 are replaced by probability 
densities p and the summations over the ensemble of SAWs be­
come integrations over a continuum phase space Q. However, 
notice that the estimators (eqs 20, 24,28, and 30) are still defined 
with summations where p replaces P. 

E. The Local States Method for Polypeptides. Assume first 
a polypeptide model of N amino acid residues having a rigid 
geometry, i.e., constant bond lengths and bond angles. A con­
formation is defined by the K backbone and side chain dihedral 
angles </>, \p, w, and x, denoted here by ak, 1 < k < K, which can 
have continuum values in the range [-180°, 180°]. In order to 
apply the LS method, one has to divide this region into a discrete 
number of segments in the following way. First, from a sample 
of polypeptide conformations one calculates the ranges Aak, within 
which the values of ak, 1 <k< K, lie (again ak represents <t>, \p, 
«, and x), 

Aak = afc(max) - a^min) (31) 

where at(max) and a*(min) are the maximal and minimal values 
of ak found in the sample. In the next stage Aa* is divided into 
/ equal segments of sizes AakJ, 

AakJ = Aa,// (32) 

We denote these segments of dihedral angles by vk (vk = 1, /), 
1 < k < K (notice that for SAWs on a square lattice, / is constant; 
i.e., / is equal to the coordination number 4). For a given con-
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formation i one can find the particular set of segments (which 
constitutes a Af-dimensional vector) (v,,,,,.... vKUI) to which the 
K dihedral angles ak belong. In a similar way one can also define 
6-dimensional vectors based on subgroups of b consecutive angles 
only, where b, the correlation parameter, is smaller than K. The 
latter vectors are called local states and they correspond to the 
local states defined for SAWs in section III.C; the related tran­
sition probabilities are defined in the same way as for SAWs. The 
only significant difference here is the fact that for a continuum 
space one has to define transition probability densities p (see later 
in this section), i.e., to divide the transition probability by the 
segment size, \ak, (eq 32) 

pi'li'k-i "*-*) = n(vk,...,vk-„)/\n(vk^ vk.b)Aau] (33) 

(i.e., according to eq 11, p is p(i>k\vk-\,...,vk-b)IAakJ). The ap­
proximate probability density for the whole conformation is 

P ( K ] , b,[) = tlp(»k\pk. »k-„) (34) 
i - l 

where [ak] denotes the set of values of ak, 1 < k < K; each 
torsional angle ak lies within the segment vk, respectively. 

Suppose now that a polypeptide molecule is simulated by 
molecular dynamics; i.e., it is modeled with flexible geometry. In 
this case one can still define a conformation, to a very good 
approximation, by its backbone and side chain dihedral angles 
<p, u% u, and x, and also the bond angles 6 and the bond lengths. 
However, the contribution of bond stretching to the entropy is 
clearly negligible6614 as the frequencies of these modes are much 
higher than kBT/h where h is the Planck constant. Therefore, 
this contribution will be neglected in this work; i.e., we assume 
that the bond lengths are constant. Thus, as for the case of rigid 
geometry, one can define a set of Aa4 (eq 31), which now also 
includes the valence angles 6 (the total number of angles, K, now 
includes these valence angles). An order among the backbone 
and side chains angles is then defined, which leads to the definition 
of various local states and transition probability densities (see eqs 
33 and 34). Notice that these probability densities take into 
account correlation between the b successive angles defining a local 
state, where b is the correlation parameter. 

The above application of the LS method to continuum models 
using internal coordinates is based on theoretical aspects that ought 
to be discussed. For such models the conformational partition 
function Z (eq 1) (which is a summation in the case of a discrete 
model) is an integral of the function exp(-E/kBT) with respect 
to the Cartesian coordinates over the whole phase space. For a 
stable state (e.g., an a-helical state) the integration, however, is 
carried out over the limited region ft that defines the state. This 
partition function leads to the average energy which is estimated 
from the molecular dynamics sample. 

In order to obtain the entropy, one has first to change the 
variables of integration in Z from Cartesian to internal coordinates, 
which makes the integrand more complex, i.e., dependent also on 
the Jacobian. However, the Jacobian J has been shown to be a 
simple function of the bond lengths and angles (but not of the 
dihedral angles), and, therefore, if the potentials of these "hard 
variables" are strong, the average values of the variables can be 
assigned to J, which to a good approximation, can be taken out 
of the integral (see refs 8, 14, and 67). One has also to assume 
that the bond lengths are not correlated with the bond and dihedral 
angles, which means, for example, that the effect of the "cross 
terms" in the Hamiltonian is ignored. This enables one to carry 
out the integration over the bond lengths and the remaining 
integral becomes a function of the dihedral and valence angles 
only; hence if the angles are expressed in radians, the integral is 
dimensionless. One obtains for the partition function Z ' 

Z = DZ = D J* exp)-E([a*])/*B71da, ... da* (35) 

(66) Dauber, P.; Osgulhorpe. D. J.; Sharon. R.. Stern. P.; Goodman, M.; 
Hagler, A. T. Computer Simulation of Biomolecular Systems. In Proceedings 
of ACS Symposium on Supercomputers in Chemistry, 1981, p 161. 

(67) Flory. P. J. Macromolecules 1974. 7, 381. 
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Figure 4. Ball-and-stick representation of cyclo-(Ala-Pro-D-Phe)2. Hy­
drogen, carbon, nitrogen, and oxygen atoms are shown in open, light gray, 
medium gray, and dark gray balls, respectively. 

The prefactor D is a product of J and the integral over the bond 
lengths; it depends on T and the units in which the bond lengths 
are expressed. Obviously, in order to calculate the absolute free 
energy or entropy one needs to know D. However, if one is only 
interested in the differences AF or AS between two states of the 
same molecule at the same T, D cancels out and, therefore, one 
can assume that D = 1. The corresponding Boltzmann probability 
density is (compare with eq 2) 

P ( K ] ) = exp[-£([a 4]) /A;Bn/Z (36) 

and the entropy is 

S = -*B f P ( K l ) In P ( K ] ) da, ...da* (37) 

This approximate entropy is estimated with the LS method. It 
should be pointed out, however, that for convenience, in our 
calculations the angles are expressed in degrees rather than radians, 
and therefore 5 (eq 37) is defined up to an additive constant. 

I I I . Results and Discussion 
In this work we studied the polypeptide cyclo-(Ala-Pro-r>Phe)2 

(Figure 4) in vacuum and in the crystal. The two systems were 
simulated by molecular dynamics (at T ~ 300 K). The crystal 
simulation (of the whole unit cell, which consists of two peptide 
molecules and 16 water molecules) was started from the X-ray 
structure of the peptides (the waters were placed at random, but 
in sterically reasonable locations). All hydrogen atoms were 
included explicitly and a full valence force field, including cross 
terms, was used. The SPC water model,68 with the addition of 
flexibility, was used to model water interactions. Periodic 
boundary conditions and a 15-A cutoff distance were used for the 
crystal simulation. The force field and parameters are described 
in detail by Kitson and Hagler.45 Every 8 femtoseconds (fs) the 
Cartesian coordinates of the system were stored in a file for later 
use. In this way two samples were created, one for the isolated 
molecule in vacuum (of size n = 112 500 conformations, obtained 
from a 900-ps trajectory) and the other for the unit cell (n = 
36 250, obtained from a 290-ps trajectory). However, because 

(68) Berendsen, H. J. C; Postma, J. P. M.; van Gunsteren. W. F.; Her­
mans, J. In lntermolecular Forces: Pullman, B., Ed.; Reidel: Dordrecht, 
Holland. 1981; p 331. 



Local States Method for Estimating Entropy of Polypeptides J. Am. Chem. Soc, Vol. 114, No. 13, 1992 5393 

Table I. The Ranges" within Which the Dihedral and Valence Angles Change during the Molecular Dynamics Simulations of 
Cyclo-(Ala-Pro-D-Phe)2 

Vacuum4'1* 
residue no. 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

residue no. 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

Ala 
Pro 
D-Phe 
Ala 
Pro 
D-Phe 

Ala 
Pro 
D-Phe 
Ala 
Pro 
D-Phe 

residue 

Ala 
Pro 
D-Phe 
Ala 
Pro 
D-Phe 

residue 

Ala 
Pro 
D-Phe 
Ala 
Pro 
D-Phe 

x1 

230 
102 
173 
360 
103 
173 

x' 
360 

53 
67 

360 
84 
50 

A<t> 

152 
114 
144 
153 
113 
146 

A<t> 

97 
76 
92 

116 
87 
98 

x2 

109 
360 

113 
360 

X2 

72 
70 

102 
75 

Av!* 

131 
137 
193 
128 
125 
197 

A<p 

60 
79 
94 
61 
81 
87 

X3 

107 
60 

106 
60 

Aw 

90 
95 
75 
95 
94 
76 

Crystal^ 

X3 

76 
53 

97 
57 

Au 

62 
49 
61 
60 
50 
62 

• 

x4 

108 
53 

93 
50 

AS(N-C 

33 
32 
30 
30 
34 
33 

AA(N-C 

X4 

70 
48 

79 
49 

23 
31 
24 
26 
29 
25 

"-C) 

X5 

50 

50 

- C ) 

X5 

48 

47 

A S ( C - C 

24 
25 
25 
23 
26 
26 

X6 

49 

50 

A S ( C - C 

22 
25 
24 
20 
26 
24 

X6 

51 

54 

-N) 

-N) 

X7 

49 

50 

x7 

47 

47 

A S ( C - N - C ) 

21 
22 
23 
20 
23 
23 

X8 

53 

60 

AS(C-N-C") 

20 
19 
22 
20 
21 
21 

X8 

52 

51 

"The ranges are defined in eq 31, and their values in degrees are rounded off to the nearest whole number. 'Results for the polypeptide in vacuum. 
c Results for the polypeptide chains in the crystal based on the maximum and minimum values of the angles for the two peptides in the unit cell. ''The 
results for the valence angles of the side chains are 15° < AS < 30° (15° < AS < 20° for the D-Phe rings) for both the vacuum and the crystal. The 
corresponding values in the two environments do not differ by more than 5°. 

only 8 fs separates consecutive conformations, they are probably 
correlated. These trajectories have been obtained by continuation 
of those studied by Kitson and Hagler.45-46 In the first stage of 
application of the local states method, each peptide conformation 
in the sample was expressed in terms of a set of 92 backbone and 
side chain dihedral angles 4>, 4>, «, and x and the valence angles 
0. From these sets of angles the entropy and free energy were 
calculated. 

A. The Peptide in Vacuum. We shall now describe in detail 
the local states method as applied to the peptide in vacuum. First, 
let us specify the dihedral and valence angles defined for each 
conformation. There are the 3 X 6 = 18 backbone dihedral angles 
0, i/s and « for the six amino acid residues of the molecule. The 
number of angles x of the side chains is one for Ala, four for Pro, 
and eight for r>Phe (we define dihedral angles also for the phenyl 
ring because of the relatively large changes observed for these 
angles, see below). A total of 48 valence angles 0 are defined for 
the backbone atoms, N, C", and C and for the side chain carbons. 
Valence angles for the hydrogens or oxygens are not taken into 
account. Therefore, the total number of angles treated is K = 
92. 

To apply the LS method one first has to define a hypothetical 
approximate scanning buildup procedure for constructing the 
polypeptide. We assume that backbone construction starts from 
one of the alanine residues denoted by Ala1; i.e., for each con­
formation the N-C* bond of Ala1 is considered to be fixed in space, 
thereby constituting a "seed" for the step-by-step construction (see 
Figure 4). Since the backbone forms a closed ring, the values 
of a) and S(C-N-C") of Phe6, the last two dihedral angles in the 
ring, are fully determined by the values of the other backbone 
dihedral angles (see Figure 4); therefore, with such a procedure, 
the transition probabilities of these two angles are considered to 
be 1, which means that their contribution to the entropy is zero. 
Also, after the backbone valence angles 0(N-C-C) (and 0-

(C-N-C") of proline) have been determined, the directions of 
the C-O3 bonds (and also N-C of proline) are almost completely 
defined. Therefore, the transition probabilities for the side chain 
valence angles 0(N-C-C5) for all residues and those for 0(C-
N-C") of proline are also ignored. For the proline side chain we 
define a scanning construction which goes from C to C. Again, 
because of the topology of the proline ring (see discussion for the 
backbone ring above), the values of x3» X4 and 0(N-C-C8), 
0(C-C-N), and 0(C-N-C) are already determined at this 
stage, and therefore only the four variables x1. X2. 0 ( C - C - C ) , 
and 6(Cs-Cy~Ci) are considered (see Figure 5). The same applies 
to the phenyl ring where the transition probabilities of x \ x8> and 
one valence angle are not taken into account; the number of 
variables for the Phe side chain is, therefore, 12. It turns out that 
the total number of angles considered is K' = 92 - 24 = 68. The 
above discussion about the determination of the relevant set of 
angles is general and is expected to apply to any molecule. In 
fact, when AT'was increased (K'> 68), the results for F8CIS), the 
approximate free energy (eq 21), were found to become worse 
[i.e., F*(b = 1) > FB(6 = 0) (F0XIS) should decrease as the 
approximation is improved)], because of the inclusion of these 
nonindependent variables. Also, one can argue that x2 and 0-
(C^-C-C*) of proline are very much determined when the other 
two angles, (x1 and 8(C-C^-C)) are specified and should be 
eliminated. However, the behavior of the results for F5XIS) with 
and without these angles was found to be comparable. This applies 
also to two angles of the phenyl ring and to \p and 0(C-C-N) 
of Phe6 which close the backbone ring. 

In the first stage of the calculation, one has to determine from 
the sample the ranges Aak, 1 <k<K, within which the dihedral 
and valence angles change. Table I shows these ranges for both 
the peptide in vacuum and in the crystal. We shall discuss here 
the vacuum results, whereas those for the crystal are discussed 
in section III.B. The calculations reveal that the valence angles 
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Figure 5. Construction of the proline side chain with the scanning pro­
cedure. The directions of the C«-Cs and CJ-N bonds (shown with thick 
lines) are mostly determined by the backbone conformation. Therefore, 
the conformation of the ring can be determined by xi, 6s, Xi< and 0\ and 
these are the only angles treated as variables. 

change in maximal ranges AS, 15° S AS < 35°, whereas the 
corresponding standard deviations at around the average values 
of 5 lie in a significantly smaller range, 1.77° < » , < 4.2°. The 
same occurs for the phenyl ring where the ranges Ax in which 
the dihedral angles x fall are Ax ~ 50° (see Table I) while the 
corresponding standard deviation value erx is smaller, ax ~ 6°. 
As seen, the Aa* values for the same angle in residues j and j + 
3 (1 < j S 3) (e.g., A0 of Ala1 and Ala4) are very close, differing 
by no more than 15° in the vacuum sample. The only significant 
difference, 230 versus 360, is observed for x' of Ala1 and Ala4, 
respectively (see discussion in refs 45 and 46). Also, the limits 
at(max) and a^min) of "symmetrically" related angles were found 
to be close to each other. This means that on average the two 
equal (in terms of sequence) halves of the molecule are also 
conformationally equal, which suggests that transition probabilities 
of symmetric local states can, to a good approximation, be con­
sidered identical [this will apply only when the values of the 
correlation parameter b that are studied are relatively small, as 
in the present study (b < 3); notice that for an exact LS method, 
at each step all the previous angles are considered and therefore 
the above symmetry cannot be used]. Thus, the data base for these 
probabilities doubles; this requires defining for symmetrically 
related angles (i.e., 0;- and 4>J+}, fy and ^+3 , etc.,y = 1, 3, or ak 
and at+46, k = 1, 46; see eq 31), 

Aa* = Aa^+46 = max(at,alfc+46) - mm(ahak+46) (38) 

The lowest approximation for the entropy S is based on b = 
0 (which means that correlations between successive angles are 
ignored) and on the assumption that the distribution of angles 
within the ranges Aa* is homogeneous; i.e., the discretization 
parameter, /, is 1. The transition probability densities are (compare 
with eq 33 and see definition of notation for b = 0 following eq 
H) 

p(a*,Z>=0,/=l) = l /Aa t (39) 

and the approximate entropy (see eqs 16 and 20) is, 

SA(b=0,l=\) = -/T1Jt8L In - ^ 7 (40) 
*=i AaA: 

where A; runs over the K' = 68 backbone and side chain angles 
that are taken into account, n is the sample size, and the bar above 
5 means estimation. Better approximations for b = 0 are obtained 
by increasing /, the discretization parameter. In this case, the 
transition probability densities (see eq 33) are 

p{ahb=0,l) = «(^)/[«Aaw] (41) 

where the angle ak belongs to segment vk, n(vk) is the number 
of times vk appears in the sample, and Aa* (is the segment length 
(eq 32). 

For ft > 1 the transition probabilities are calculated in the 
following way. An order is defined among the backbone dihedral 
and valence angles 0(AIa1), S(N-C-C) (of Ala1), ^(AIa1),..., 
etc. and for each side chain (e.g., for proline X(C-C9), S-
(C-C-O) , . . . , etc.). Then local states are defined and two sets 
of transition probabilities are calculated from the sample for the 

backbone and side chains, respectively (see section II.C). Two 
types of approximations are defined for the side chains: (1) / > 
1 and correlations between the angles are ignored (i.e., b = 0); 
(2) / > 1 and the correlations based on b = 1 are taken into 
account (see the discussions preceding eq 9 and before and after 
eq 13). The transition probability densities for the backbone are 
based on b < 3. Thus, for b = 1 the backbone transition prob­
ability densities for Ala1 are (for simplicity we omit, in most cases, 
the variables b and /): p(0, b = 0, /), p(S(N-C-C)|0), p(i£|S-
(N-C-C)) , P(S(C-C-N)Ix1), P ( « | S ( C - C - N ) ) , p(S(C-N-
C"^), and p(0|S(C-N-C)), where in the last two p's, N and 
C are of Pro1. Notice that (1) the probability density for 0(AIa1), 
which is the first variable in the buildup procedure, is based on 
b = 0 rather than b = 1 and (2) S(C-C-N) depends on x1 (see 
eq 13). In the same way the probability densities are defined for 
the other backbone angles and for higher values of b (b < 3). 
Using b = 1, the probability density for x1 is p(xV) f°r all t n e 

amino acid residues (see eq 13). For proline we have found that 
the best approximations (i.e., which leads to maximal values of 
the approximate free energy FA and minimal values for F^(IS), 
respectively) are obtained when the probability density of S-
(C-C^-C1O and x2 are based on b = 0 (i.e., no correlations), while 
S ( C- C- C) is correlated, i.e., p(0(C-C-C|x2) is used. For 
D-Phe we employ p(S(C-C-C|x ' ) , p(x2 |S(C-C-C), and 
P(S(C-C-C)Ix2) (see Figure 4). It has been found that the best 
way to treat the phenyl ring is to define probability densities based 
on b = 0 (no correlations) for x3 and S ( C- C- C 1 ) , while the 
probability densities for the following angles (i.e., x4, 6-
( C - C - C O , etc.) are based on b = 1 (i.e., P(X4IS(C-C-C)), 
etc.). These conclusions are general and can be applied to other 
side chains as well. 

1. Results for FA and aF\ Table II presents results for the 
approximate free energy FA (eq 18) and its fluctuation <rF

A (eq 
29) [estimated by F* (eq 20) and aF

A (eq 30)]. As mentioned 
above, in order to use these equations for a continuum model, the 
probabilities are replaced by probability densities (eq 34), and 
the summation (eqs 20 and 18) is carried out over the polypeptide 
sample rather than over the sample of SAWs. Eight different 
approximations defined by the correlation parameter b are studied, 
in which the backbone probability density is described by b = 0, 
1, 2, and 3 and the side chains by b = 0 and b = 1 (i.e., ap­
proximations 1 and 2, respectively, discussed in the previous 
paragraph). Results for these eight approximations are obtained 
for various values of the discretization parameter / from / = 3 
to / = 40. For FA we also present the result for the lowest 
approximation, based on b = 0 and / = 1 (see eqs 20 and 40). 
As expected, for each value of b, FA increases and 9F

A decreases 
as / is increased, i.e., as the approximation improves. The same 
behavior is observed when b is increased for a given /. Thus, FA 

increases from 23.47 kcal/mol per residue plus an additive constant 
for b = 0 and / = 1 (the worst approximation) to 29.45 (in the 
same units) for / = 40 and b = 2 for the backbone and b = 1 for 
the side chains (the best approximation studied). The largest 
change in FA occurs in changing / from 1 to 3. Correspondingly, 
the fluctuation aF

A decreases from 1.003 kcal/mol per residue 
(for / = 3 and 6(back) = 6(side) = 0) to 0.910 kcal/mol per 
residue (for / = 40, i(back) = 2 and £>(side) = 1). 

It should be noted that all these results depend on the definition 
of the region fi in phase space (eq 35), which in our case is defined 
by the sample and which constitutes a part of the region Aa1 X 
Aa2 X ... X Aa^ defined by the K = 92 internal angles. Therefore, 
for longer trajectories, both fi, and the Aa*'s, are expected to 
increase slightly, which will increase the entropy. [Notice that 
increasing the trajectory in general leads to a relatively small 
change in the average energy since the opposite energy fluctuations 
approximately cancel each other. On the other hand, entropy 
fluctuations are not canceled out, and therefore they always in­
crease the average entropy; this can easily be deduced by con­
sidering a Gaussian distribution, for example.] Thus, estimating 
the accuracy of the results (for any given value of b and /) is not 
straightforward, since it is affected by the size of ft, the statistical 
error of the transition probability densities, which depends on the 
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Table II. Results0'' for the Free Energy FA, Its Fluctuation s / , and F8QS) for the Peptide in Vacuum''* 
//6(back),A(side) 

1 
3 
8 

16 
20 
30 
40 

3 
8 

16 
20 
30 
40 

12 
14 
16 
18 
20 
25 
30 
40 

0,0 

23.47 
27.01 
28.44 
28.82 
28.88 
28.93 
28.95 

1.003 
0.978 
0.974 
0.972 
0.972 
0.971 

33.18 
33.28 
33.13 
33.22 
33.46 
33.34 
33.50 
33.47 

1,0 

27.04 
28.54 
28.94 
28.99 
29.05 
29.08 

0.993 
0.963 
0.955 
0.952 
0.950 
0.948 

33.02 
33.19 
33.06 
33.10 
33.37 
33.26 
33.41 
33.38 

2,0 

27.08 
28.67 
29.10 
29.17 
29.28 
29.38 

0.982 
0.950 
0.938 
0.933 
0.925 
0.917 

3,0 
/•A 

27.09 
28.71 
29.22 

0.979 
0.946 
0.924 

P ( I S ) 

0, 1 

27.02 
28.49 
28.88 
28.94 
29.00 
29.02 

0.996 
0.964 
0.959 
0.956 
0.955 
0.953 

33.10 
33.19 
32.97 
33.13 
33.33 
33.24 
33.41 
33.37 

1, 1 

27.05 
28.59 
29.00 
29.06 
29.12 
29.15 

0.987 
0.951 
0.942 
0.939 
0.936 
0.933 

32.92 
33.08 
32.90 
33.01 
33.23 
33.14 
33.32 
33.26 

2, 1 

27.09 
28.72 
29.17 
29.24 
29.35 
29.45 

0.977 
0.942 
0.930 
0.925 
0.917 
0.910 

3, 1 

27.10 
28.76 
29.28 

0.975 
0.938 
0.918 

"I is the discretization parameter; ft(back) and fc(side) define the approximation for the backbone and the side chains, respectively, where b is the 
correlation parameter (for details see the text). 4FA, 0F

A, and P(IS) are defined in eqs 20, 30, and 24, respectively. 'The results for FA and P(IS) 
are in kcal/mol per residue, plus an additive constant, which is the same for all cases; those for aF

k are in kcal/mol per residue. rfThe estimated 
statistical error increases as / and b are increased. The maximal estimated error of FA is ±0.12, whereas that for P(IS) is expected to be five times 
larger; the error of 3yA is ±0.005 (see discussion in text). 

sample size, n, and, for a given set of transition probability densities 
also by the statistical error of the estimator FA (eq 20) (which 
depends on n and oyA). We have, therefore, estimated, in Table 
II, the statistical errors from values of FA and aF

A obtained for 
various sample sizes n. In these calculations the values of Aak 
(eq 38 and Table I) were kept fixed at those obtained for the entire 
sample of 112 500 conformations [see the caption of Table H]. 
The statistical error obtained in that way is, however, somewhat 
subjective. Also, the statistical errors do not represent independent 
uncertainties of the results; on the contrary, the values of FA (and 
of aF

A) change in a correlated manner for different sample sizes 
n. As mentioned in section II, for the exact free energy F (eq 
5) the fluctuation, aF, - 0, whereas the fluctuation of the energy 
and entropy, aE and as, respectively, increase as Nl/2 with in­
creasing system size N. One therefore expects that for a good 
enough approximation, aF

A (eq 29) would become smaller than 
VE (eq 7). This was indeed observed in simulations of Ising 
models.32,33 However, the value of the fluctuation obtained for 
the best approximation in the table, &F

A = 0.910(4) is still slightly 
larger than the energy fluctuation, 9E - 0.8581(4) kcal/mol per 
residue. Obviously, one can define better approximations by 
increasing b and /; however, the number of local states increases 
dramatically and thus very large samples are required in order 
to obtain an adequate data base. 

2. Results for F*. For a good enough approximation, the results 
for the approximate free energy F8 (eqs 21, 24, and 28) are 
expected to constitute an upper bound of the correct free energy 
(see discussion following eq 22). It should be noted that it is more 
difficult to obtain a reliable estimate for F8 than for FA. This 
is because the largest contribution to FA comes from the most 
probable conformations with respect to the sampling probability 
density (i.e., the Boltzmann distribution) (see eq 36). These 
conformations have typical equilibrium energies [which are close 
to the ensemble average value, E (eq 3)] and are also expected 
to consist of typical local states; therefore, the data base for the 
corresponding transition probabilities is sufficiently large even for 
relatively large values of / and b. F6, on the other hand, is defined 
with the approximate p'([ak], b, I) (based on eqs 15 and 34) but 
has to be estimated from a sample generated with the correct 
Boltzmann probability density p(\aK]) (eq 36). Therefore, as 
discussed above (section ILD. 1), if these probability distributions 

are different, the typical conformations with respect to p' will 
belong to the "tail" of p^a*]) (see Figure 2). Therefore, only 
a small number of conformations will contribute significantly to 
F*. One would therefore expect that F3 would be statistically less 
reliable than FA. 

A measure of the effective sample size for F8 is provided by 
the number of accepted conformations, naccept (eq 27), obtained 
with the Schmidt procedure. In fact, the values of naccep, obtained 
(they depend somewhat, of course, on the sequence of random 
numbers) have never exceeded 70 (out of a total sample of 
112 500), which means that the effective sample for F* is very 
small. This should be compared with 100 < n^^ < 1200 obtained 
for the a-helical state of decaglycine in ref 34. The present smaller 
values of naccept stem from the fact that better approximations 
(larger values of b and /) are required to treat a cyclic molecule 
than a linear one since the internal coordinates must be highly 
correlated in order to achieve ring closure. The existence of side 
chains and the use of flexible geometry also add to the difficulty 
of handling cyclo-(Ala-Pro-D-Phe)2 as compared to decaglycine. 

The results for F^(IS) in Table II reveal that for each pair of 
values i(back) and i(side), the results for F^(IS) (eq 24) do not 
decrease with increasing /, i.e., improving the approximation, but 
are smaller for 12 < / < 18 than for / > 18. This probably stems 
from the fact that the data base becomes insufficient for the larger 
values of /. On the other hand, for each /, F*(IS) decreases with 
improvement in the approximation. Also, as expected, the results 
for the approximations (0, 1) and (1, 1) are always smaller than 
those for (0, 0) and (1, 0), respectively. This behavior has been 
found to occur for sample sizes of n = 90000 and up and, 
therefore, in spite of the relatively large statistical error, we 
consider it to be significant. However, for / < 12 an opposite trend 
has been observed. It should be pointed out that the values for 
F°(A) (eq 28) (i.e., those calculated with the Schmidt procedure) 
in most cases increased for a given l(l> 12) rather than decreased 
with improving the approximation. However, these values are 
statistically less reliable than those of F^IS) since the Schmidt 
procedure is basedon an additional stochastic process. 

The results for F^(IS) are not accurate enough to define ap­
proximations for the average free energy, F*1 (eq 23), that converge 
satisfactorily to F (sufficiently accurate approximations were 
obtained for the a-helical state of decaglycine in ref 34), and, 
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indeed, the present approximations are significantly worse than 
those obtained for the a-helix. The two molecules have comparable 
numbers of atoms, but the difference, FA - FB, for the best ap­
proximations is ~2.03 kcal/mol for the a-helix versus ~21.3 
kcal/mol for cyclo-(Ala-Pro-D-Phe)2. However, in order to get 
some feeling for the accuracy of the present approximations, we 
have calculated for / = 20 and (i(back), fe(side)) = (2,1) the value 
F™ = 31.24 (eq 23) which should be compared to FA = 29.24 and 
F8 = 33.23, all in kcal/mol per residue (plus the same additive 
constant). The corresponding values of the entropy are TS A = 
21.29 and TSM = 19.22 in the same units, where T = 306.6 K 
is the average temperature during the simulation. 

In summary, the behavior of the results for the approximate 
free energies FA and F8 and the fluctuation of FA, aF

A, for the 
cyclic polypeptide in vacuum has shown that the method is reliable 
(i.e., certain inequality relations are satisfied). However, in order 
to obtain converging results for F*1, larger samples are required, 
which would increase the number of accepted conformations 
leading, thereby, to better approximations for F8. However, we 
have decided to avoid these extra calculations (which are feasible) 
since F6 is not defined for the peptide in the crystal, and hence 
SA (which is obtained with sufficient accuracy) is used to compare 
the entropies of the peptide in the two environments. 

B. The Crystal Environment The unit cell contains two peptides 
and 16 water molecules. In order to apply the LS method, one 
should first envisage an appropriate exact scanning procedure. 
One can start building peptide 1, for example (in an empty cell), 
step-by-step as previously described. However, in this case the 
future scanning is carried out over all the peptide angles and also 
over the various configurations of the waters and peptide 2; these 
configurations limit the conformational freedom of chain 1. Thus, 
if the cell construction is stopped after building peptide 1, the 
probability of construction defines an entropy of peptide 1 in the 
unit cell. This entropy, denoted Sp(cell), is the entropy of a 
molecule with potential of mean force7'8 (see discussion following 
eq 42 below). If construction of the cell is continued, one can 
obtain the entropy of the whole unit cell. In this paper, however, 
we limit ourselves to the study of the peptide entropy. Thus, the 
LS method for the peptide in the crystal is carried out in basically 
the same way as described for the peptide in vacuum (ignoring, 
thereby, the translational entropy part of Sp(cell) which is, how­
ever, expected to be small); the translational entropy of the 
molecule in vacuum also has not been taken into account. Here, 
however, because the two peptide chains are positioned symme­
trically in the cell (i.e., they have similar environments), one can, 
to a good approximation, treat them as independent structures, 
thereby doubling the sample size (n = 72 500 rather than 36 250). 

Let us now develop a formal expression for the entropy Sp(cell) 
(discussed above) of a polypeptide chain in the unit cell. For the 
sake of simplicity we shall use the notation of a discrete model. 
The cell partition function, Z(cell), can be written as 

Z(cell) = Lexp[-F,(total)//tBri (42) 

where i runs over all the conformations of peptide 1 in the ensemble 
(phase space) Q, for example, and F,(total) is a free energy function 
that is obtained from a partition function (eq 5) which is based 
on a summation over all the configurations of the water molecules 
and peptide 2 for a given conformation i of peptide 1 (see refs 
7 and 8). The ensemble probability of/' in the cell is thus, 

F,B(cell) = exp[-F,(total)/fcBr]/Z(cell) (43) 

and the conformational entropy of peptide 1 in the cell, Sp(CeIl), 
is 

S.(cell) = -kB L F,B(cell) In F,B(cell) (44) 
/en 

S.(cell), defined above, is a measure of the conformational freedom 
of peptide 1 in the cell and can be compared with the entropy of 
the peptide in vacuum. Notice that the free energy of the whole 
cell, F(total), can be expressed in terms of the probability F,B(cell) 
and the free energy F,( total) 

F(total) = -kT In Z(total) = LF,(total) + kT In P,B(cell) 
/en 

(45) 
where the fluctuation of F(total) can be shown to vanish.53 As 
for the peptide in vacuum, one can define an approximation 
5p

A(cell) [based on an approximate probability distribution P1(I)) 
(see eq 16)] and in principle also lower and upper bounds for 
F(total), FA(total), and F^total), respectively. However, cal­
culation of the two latter quantities is not practical since F,(total) 
is unknown. On the other hand, one cannot define a partition 
function solely for peptide 1 in the cell from which free energy, 
energy, and entropy can be derived from the usual thermodynamic 
equations. However, it is still useful to define several energies 
which are related to peptide 1 in the cell. Thus, we define the 
intramolecular energy F,(intra) which consists of the intrapeptide 
interactions for conformation /'. Another energy is F,(peptide), 
which include £,(intra) as well as the ensemble average (over all 
configurations of the water molecules and peptide 2) of the in­
teraction energy of the atoms in the unit cell (those of the 16 waters 
and peptide 2) with the atoms of peptide 1 (fixed in conformation 
/). One can also define £,(total) which is the ensemble average 
of the total energy of the unit cell for conformation / of peptide 
1. The same can be defined for peptide 2. The average of £,(intra) 
over the peptide configuration i (denoted F(intra)) can be com­
pared to the average energy of the peptide in vacuum; the dif­
ference between these energies measures the strain energy, which 
results from the forces exerted on the peptide chain by the crystal 
environment.45 £,(total) constitutes part of F,(total), and therefore 
its ensemble average (over i), F(total) together with the ap­
proximate entropy Sp

A(cell) provides an approximation for F(total) 
(using the relation F = E- TS). The same relation enables one 
to define free energy function of peptide 1 which is based on 
5p

A(cell) and the ensemble average (over i) of £,(peptide) (denoted 
F(peptide)). This free energy can be used as an approximate 
measure of binding of a ligand to a protein (see, for example, ref 
3). The fluctuations of these three approximate free energies are 
not zero; however, their magnitudes are important since they 
determine the statistical error of the corresponding free energies. 

The values of the ranges of the internal coordinates Aak (eq 
38) for the polypeptide in the crystal are presented in the lower 
part of Table I. The values of Aa*. for the backbone and many 
of the side chain dihedral angles are significantly smaller in the 
crystal than in vacuum. On the other hand, the valence angles 
8 in the two environments are close. This suggests that the peptide 
has lower entropy in the crystal than in vacuum. The table also 
shows that the values of Aa* for corresponding angles of residue 
j and; + 3 (J = 1, 3) are close. However, the differences between 
these pairs of values are slightly larger in the crystal than in 
vacuum. This is probably both because of the smaller sample size 
of the former model and the fact that the environments of residues 
j andy + 3 (e.g., Ala1 and Ala4) were slightly asymmetric at the 
beginning of the simulation (since the water molecules were not 
symmetrically arranged in the initial system) and remain so 
throughout the simulation.45 

In Table III results for the entropy Sp
A(cell) [estimated by 

Sp
A(cell)] of the peptide in the crystal are presented for various 

approximations b and /. As expected (eq 17), S_A(cell) decreases 
as i(back) and / are increased. This means that the three ap­
proximate free energies FA (eq 18) (based on 5p

A(cell) and the 
ensemble averages (over i) F(intra), F(peptide), and F(total)) 
should all increase as Sp

A(cell) decreases. From the sample we 
estimate the values F(intra) = 306.4 (3), F(peptide) = 219.4 (2), 
and F(total) = 322.4 (3) (all in kcal/mol). In these calculations, 
the energies for each i, £,(PePtide) and £,( total), defined above 
as ensemble averages, were estimated by the energies of the in­
stantaneous configuration of the system associated with each i. 
F(intra) is slightly larger than the vacuum energy,45 303.17 (2) 
kcal/mol. One can also calculate the fluctuations oE (eq 7) of 
the above three energies and the corresponding free energy 
fluctuations oyA (eqs 29 and 30). We have found that the values 
of aF

A for the three definitions of the energy are comparable to 
the corresponding energy fluctuations and they always decrease 
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/ 

1 
3 
8 
20 
30 
40 

0,0 

0.0830 
0.0700 
0.0663 
0.0651 
0.0650 
0.0649 

1,0 

0.0699 
0.0662 
0.0650 
0.0648 
0.0648 

2,0 

0.0699 
0.0659 
0.0645 
0.0642 
0.0638 

6(back),A(side) 

3,0 

0.0698 
0.0657 

0, 1 

0.0700 
0.0662 
0.0650 
0.0649 
0.0648 

1, 1 

0.0699 
0.0661 
0.0649 
0.0647 
0.0646 

2, 1 

0.0698 
0.0658 
0.0644 
0.0640 
0.0636 

3, 1 

0.0698 
0.0656 

" I is the discretization parameter; i(back) and ft(side) define the approximation for the backbone and the side chains, respectively, where b is the 
correlation parameter (for details see the text). bSp

A is defined in eqs 16 and 20 (see also eq 44). cThe results are in kcal/(mol deg) per residue plus 
an additive constant; the error is ±0.0003. For comparison, for / = 40 and [A(back),6(side)] = [2,1], SA = 0.0689 in vacuum. 

Table IV. Results for TASA, the Difference between the Peptide Entropy in Vacuum and in the Crystal0'' 

/ 

1 
6 
8 
12 
14 
16 
20 
30 
40 

0,0 

10.01 
11.01 
10.59 
10.42 
10.25 
10.22 
10.16 
10.05 
10.05 

1,0 

10.70 
10.23 
10.03 
9.85 
9.79 
9.74 
9.61 
9.61 

2,0 

10.47 
9.98 
9.75 
9.57 
9.51 
9.46 
9.50 
9.66 

A(back),6(side) 

3,0 

10.51 
10.07 
9.90 
9.77 
9.81 

0, 1 

10.84 
10.42 
10.23 
10.07 
["10.01 
I 9.94 
i 9.85 
! 9.83 

1, 1 

10.55 
10.07 
9.83 
9.66 
9.59 
9.50 
9.42 
9.42 

2, 1 

10.33 
9.81 
9.53 
9.37 
9.31 
9.26 
9.27 
9.46 

3, 1 

10.36 
9.90 
9.72 
9.59 
9.61 

" ASA is defined in eq 46. / is the discretization parameter; i(back) and i(side) define the approximation for the backbone and the side chains 
respectively, where b is the correlation parameter (for details see the text). T = 307.9 K. * 7"ASA is given in kcal/mol. The final estimate of ASA 

has been obtained by averaging the results within the dashed square. 

as the approximation improves; this is important since aF
A de­

termines the statistical error. Our results are aF
A = 1.055 versus 

sE= 1.069 (intra), 1.120 versus 1.138 (peptide), and 1.434 versus 
1.390 (total) (all in kcal/mol per residue) for the best approxi­
mation, / = 40, b = 2 (backbone), and b = 1 (side chains). As 
has been mentioned, these energies and free energies are of interest 
since their averages can be used as approximate criteria for de­
termining protein-ligand binding. 

1. LS Results for AS\ As discussed above, the free energy 
of the peptide in the cell is not well defined (only the free energy 
of the whole cell is well defined thermodynamically), and therefore 
only its entropy Sp(cell) (eq 42) can be compared with that of 
the peptide in vacuum. Since the average entropy SM = (E -
FM)/T (see eqs 5 and 23) is not defined for the peptide in the 
crystal, one can estimate only Sp

A(cell) (see eq 16) which, for 
simplicity, will be denoted SP

A (we denote by SA
WC the approximate 

entropy of the peptide in vacuum). In Table IV, values of ASA, 
where 

ASA(b, /) = S\iC(b, I) - SA(b, I) (46) 

are given for the discretization parameter / = 1 , 6 , 8, 12,14,16, 
20, 30, and 40 using correlation parameter i(back) = 0, 1,2, and 
3 for the backbone and 6(side) = 0 and 1 for the side chains. In 
this calculation the temperature T = 307.9 K is the average value 
of 306.6 K and 309.27 K, which are the average temperatures 
obtained from the vacuum and the crystal simulations, respectively. 
For each pair [i(back), t(side)] the results for ASA decrease as 
/ is increased. This shows that SA decreases more rapidly in the 
vacuum system as / is increased, indicating that larger values of 
/ are required for the vacuum system. This reflects the larger 
ranges of dihedral and valence angles, Aak, for the vacuum case. 
However, for the two largest values of / in each column, this 
decrease actually ends and in some cases (for i(back) = 2 and 
3) ASA even increases, which means that, within the statistical 
error, convergence has been attained. Correspondingly, for each 
value of / and i(side), the results for i(back) decrease in going 
from fc(back) = 0 to 2 (except for / = 40), indicating that SA for 
the vacuum case decreases more strongly than for the crystal as 
i(back) is increased. This probably reflects the fact that the 
angle-angle correlations along the chain backbone are slightly 
stronger for the peptide in vacuum than in the crystal (because 
for the peptide in vacuum the ring closure condition must be 
satisfied for larger values of the backbone ranges Aak than for 

the peptide in the crystal), and therefore larger values of i(back) 
are required to treat the vacuum system than are required to treat 
the crystal peptide equivalently. This effect, however, weakens 
with increasing i(back) where the difference rA5A[i(back)] -
TASA[6(back) + 1] is ~0.4-0.5 kcal/mol for 6(back) = 0 and 
~0.1—0.3 kcal/mol for 6(back) = 1. However, for £>(back) = 
2, this tendency reverses where AS'A[6(back) = 3] > ASA[i(back) 
= 2]. Again, one could interpret this behavior as a sign of con­
vergence of ASA(b,l). The results for 6(side) = 0 (the left side 
of Table IV) are larger by ~0.2 kcal/mol than the corresponding 
values of i(side) = 1. This difference is relatively small, and it 
stems only from the larger decrease in the results for S\iC than 
those for SP

A in going from i(side) = 0 to 1 (see results for FA 

and 5P
A in Tables II and III, respectively). We have also cal­

culated ASA for the same backbone transition probabilities de­
scribed above (i.e., based on i(back) < 3) but for side chain 
transition probabilities that are better and worse than those that 
consist of 2>(side) = 0 and 6(side) = 1, respectively. Thus, for 
the side chain dihedral angle x1 we have used p(xW (i-c, i(side) 
= 1) while p(b = 0, /) has been defined for the other side chain 
angles. The results for ASA obtained by this approximation are 
larger by not more than 0.6% than the corresponding values in 
Table IV based on 6(side) = 1. This suggests that convergence 
of ASA has been attained also with respect to the side chain 
contributions. It should also be pointed out that the Aak values 
for the dihedral and valence angles of the r>Phe rings are relatively 
small and comparable for the peptide in the two environments, 
and therefore their contribution to the correct AS is expected to 
be small. In fact, we have calculated a similar table to Table IV 
but without taking into account the angles of these rings, and the 
results were found to differ from those in Table IV by not more 
than 1%. 

The convergence of the results of ASA enables one to estimate 
AS by ASA. For that we average the results in Table IV for i(side) 
= 1, / > 16, and 6(back) > 1, obtaining 

TAS = TASA = 9.4 ± 0.8 kcal/mol 

The statistical error was obtained by calculating tables like Table 
IV for a sample of n = 26 000 and « = 80 000 for the crystal and 
vacuum simulations, respectively. Notice that the above statistical 
error does not stem from scatter in the results for Sp

A and SA
vac 

for / = 16-40; in fact, this scatter is much larger, ranging from 
6.65 to 12.93 for min[SA

vac] - max[Sp
A] and max[SA

vac] - min-
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[Sp
A], respectively. It should be pointed out that the result TASA 

= 10.01 kcal/mol for the worst approximation, i(back) = 0, 
6(side) = 0, and / = 1 (i.e., that which assumes homogeneous 
distribution) lies well within the statistical error of our estimate 
of 9.4 kcal/mol. 

The fact that ASA, the difference of the approximate entropies, 
converges to the exact entropy difference, AS, for relatively small 
values of the correlation parameter 5(back), i(back) = 2 or 3, 
while the corresponding values of the entropies SA

vac and SP
A 

significantly overestimate (see end of section III.A.2) the correct 
values of the entropies S (eq 4) and Sp(cell) (eq 44), respectively, 
means that the deviations SA

vac - S and Sp
A - Sp(cell) are com­

parable, and therefore they are cancelled out in ASA. As can be 
seen from Table I, the values of the ranges Aa* are somewhat 
larger for many angles in the vacuum system than for the cor­
responding angles in the crystal case. We might expect, however, 
that in some cases the contribution to the difference in entropy 
from these angles would not be dependent on /. To explain this 
convergence, with respect to /, we consider the following example. 
Let Aak(y) and Aak(c) denote the ranges (eq 31) of the same angle 
ak for the molecule in the vacuum and the crystal, respectively, 
where Aak(y) = aAak(c) (a> 1); thus for the lowest approxi­
mation (b = 0, / = 1), one obtains ASA(ak) = In a (see eq 40). 
For a better approximation (b = 0, /), one has / transition 
probability densities p(pk, b = 0)/Aaw [=p(vk,b=0)], 1 < vk < 
I (see eq 33). U p(vk,b=0) is close to a Gaussian for both the 
peptide in vacuum and in the crystal, and because L*P("*.*=0) 
= 1, the values of p for segments vk,\<vk<l will be approx­
imately the same in the two environments; therefore again 

ASA(a*) ~ L1SIn [p(Vk)l/aAak{c)] -

In [p(Vk)l/Aak(c)]) = \na (47) 

where p(vk,b=0) is denoted by p(vk) and Aaw = Aak/l (see eq 
32). Thus if the angles were uncorrelated, ASA, that is based on 
5 = 0 and a small value of /, would be a good approximation for 
AS. However, the above assumption that the probability dis­
tributions p(vk,b=0) in the two environments are approximately 
equal might be wrong in a case, for example, where Aa (̂c) is small 
(50-100°) while Aa^v) = 360°. Also, for small values of b, the 
relation ASA(b, I) =* AS that is found in the present case might 
be incorrect if the range of correlations between angles (along 
the backbone) is significantly different for the two states being 
compared (see previous discussion in this section). In such a case, 
the values of SA(b,[) for the state with the shorter correlation range 
(denoted by b0) are not expected to change as b is increased beyond 
b0, while the results for SA(b,l) of the second state will continue 
to decrease for b > b0. Such an example was studied by Karplus 
and Kushick,14 who used the quasiharmonic approximation, where 
the helical state of decaglycine was found to be more correlated 
than the extended state. In general, these correlations will depend 
on the potential energy function, the temperature, and the con­
formational state in which the molecule is located. However, it 
is difficult to predict the range of these correlations, and, therefore, 
one should verify for each molecule studied that the results for 
the approximation ASA indeed converge. In fact, we reexamined 
the results in ref 34 for decaglycine for the difference in the 
approximate free energy AFA = FA(helix) - FA(hairpin) for the 
approximations / = 4, 8,12, and 16 and found for b = 1 the values, 
AFA = 0.38,0.38, 0.39, and 0.37 and for b = 2, AFA = 0.38, 0.39, 
0.39, and 0.39 respectively (all in kcal/mol). These results are 
equal within the statistical error to the value Af*1 = ^(hairpin) 
- F^helix) = 0.40(7) kcal/mol (see eq 23) which is considered 
to be the exact free energy difference within the statistical error; 
AF\b=0,l=l), however, was found to be slightly smaller, ~0.33 
kcal/mol, but still within the statistical error of AFM. This is 
therefore another example where AFA (and therefore A5A) con­
stitutes an excellent approximation of AF (AS). 

We should point out again that the worst approximation 
ASA(i=0,/=l) is expected, in cases where comparable ranges of 
correlations exist in the two states and the corresponding values 
of Aak are not extremely different, to be a good approximation 

for AS. This is important since the number of local states in this 
approximation is the smallest, K' (which is the number of angles 
ak taken into account), and therefore the method can be applied 
efficiently to a protein of any size. Better approximations consist 
of K'lb+] local states and require larger computer memory and 
longer trajectories for generating a suitable data base. 

2. Results for ASA Using the Harmonic Approximation. We 
have also calculated the entropy using the harmonic approxi­
mation, i.e., from the normal mode eigenvalues (frequencies). For 
the peptide in vacuum, the lowest energy conformation found by 
minimizing structures sampled at regular intervals during the 
dynamics simulation was taken, and the normal modes were 
calculated around this lowest energy structure. For the crystal 
the energy of the complete unit cell was minimized, starting from 
the X-ray structure, and the normal mode analysis was carried 
out for peptide 1 and peptide 2 independently. In this latter 
analysis, the interactions between the peptides and their envi­
ronment (to a cutoff of 15 A) were taken into account. The 
entropy for the vacuum and crystal peptides was then calculated 
by the Einstein quantum mechanical harmonic oscillators for­
mula51 where, 

TS = E 
J 

hv, 

exp(hpj/kET) - 1 
In (•A-m (48) 

andy runs over all the vibrational frequencies Vj and h is Planck's 
constant. We also used the formula for classical oscillators where 
the difference in entropy between the peptides in the two envi­
ronments is14 

(49) TAS = A:B In [Uvj(.c)/Uf/y)] 

Here p/c) and vj(y) are the frequencies of the peptide in the crystal 
and vacuum, respectively. 

The lowest frequency of the peptide in vacuum is 9.5 cm"1, while 
those for the two peptides in the crystal are 44.7 and 47.5 cm"1. 
It should be noted that, for the molecule in vacuum, the six 
frequencies related to translation and rotation are zero; therefore, 
the entropy is based only on the 3JV - 6 (=258) frequencies of 
the vibrations. For the peptides in the crystal, however, we have 
found that all 3iV frequencies are nonzero and that the normal 
modes corresponding to the 20 and 40 lowest frequencies (out of 
a total of 37V for peptide 1 and 2, respectively) include substantial 
nonzero components of translation and rotation, respectively. 
Translational movement was determined by a change in the center 
of mass upon displacement along each normal mode, and rotational 
movement was determined by calculation of the total angular 
momentum, the sum of the cross products Rk X m*/> for all atoms 
of the peptide, where Rk is the vector from the center of mass of 
the peptide to atom k, mk is the mass, and rk is the displacement 
of atom k along the normal mode (minus any translational 
movement). It should be pointed out that these numbers (20 and 
40) depend on a cutoff for the contribution from rotation and 
translation that is somewhat arbitrary. Since the six zero fre­
quencies corresponding to rotation and translation were eliminated 
from the calculation of the entropy of the isolated peptide, we have 
discarded the contribution of six frequencies of the crystal peptides 
in order to compare the entropies of the peptides in the two 
environments. These six frequencies were selected according to 
four different criteria: (1) the six lowest frequencies; (2) and (3) 
those with the largest translational and rotational components, 
respectively (these two sets of frequencies are not necessarily the 
same, nor are they necessarily the six lowest frequencies); and 
(4) the three frequencies with the largest translational components 
and the three with the largest rotational components. Differences 
in entropy, AS [=S(vacuum) - S(crystal)], for peptide 1 were 
calculated by eliminating the contribution of each one of the above 
four groups of frequencies. The four results for AS were then 
averaged and the statistical error was obtained from the corre­
sponding variance. The same was done for peptide 2. The results 
(in kcal/mol) are 

TAS(I, quantum) = 12.2 ± 0.4 
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7ASXl, classical) = 13.3 ± 0.4 

rAS(2, quantum) = 11.3 ± 0.4 

TLS(I, classical) = 12.4 ± 0.4 

where 1 and 2 denote peptides 1 and 2, respectively, and T = 307.9 
K; the quantum and classical refer to results obtained by eqs 48 
and 49, respectively. These results show a difference of ~ 1 
kcal/mol between the corresponding results for peptides 1 and 
2. The values of AS(classical) are always larger by ~ 1 kcal/mol 
than the corresponding quantum mechanical values. The above 
results, as a whole, are 2-4 kcal/mol larger than the value of 9.4 
obtained by the local states method. It should be pointed out again 
that our elimination of the contribution of only six frequencies 
for the peptides in the crystal is somewhat arbitrary since nonzero 
components of translation and rotation were found to exist for 
other frequencies as well (notice that elimination of additional 
frequencies would lower the values of AS). 

For the peptide in vacuum we have calculated the entropy for 
several other minimum energy conformations accessible to the 
molecule. The difference between the maximum and minimum 
values found for the quantum mechanical entropy (TS, eq 48) 
was 1.5 kcal/mol. Also, in the calculations described above of 
Sp

A(cell) for the peptide in the crystal, the data from both peptides 
were used together to obtain a single value of the entropy (Table 
IV). We have calculated tables similar to Tables I and IV for 
the peptides 1 and 2 separately. The corresponding values of Aak 

are obviously smaller than those based on the two peptides to­
gether, and thus the values of TASA are up to 1 kcal/mol larger 
than those of Table IV, but they are still smaller than those 
obtained with the harmonic approximations. 

IV. Summary 
The LS method is general in the sense that it is not limited to 

handling the entropy of harmonic or quasiharmonic conformational 
changes but can be applied to any chain flexibility (see ref 37). 
The method provides approximations for the entropy which can 
be systematiclly improved by increasing the correlation and 
discretization parameters, b and /, respectively. 

Here the LS method was applied to samples obtained from 
molecular dynamics simulations of cyclo-(Ala-Pro-D-Phe)2 in 
vacuum and in the crystal. The free energy functionals F 8 (eq 
21) and FA (eq 18) and the fluctuation <r/ (eq 29) of the latter 
were calculated (F8 was only calculated for the peptide in vacuum) 

and shown to satisfy certain theoretical relations, which suggests 
that the method is reliable. In the usual application of the LS 
method to a chain in vacuum, one would seek to estimate F*1 = 
(FA + FB)/2, which is expected to provide the best approximation 
for the correct free energy, F. However, this might require 
generating relatively large samples in order to adequately estimate 
F8. Also, for a peptide in solvent or in the crystal, F 8 for the 
peptide chain is not well defined. Therefore, in such cases one 
can only calculate SA (or some approximations FA) and the 
difference ASA (AFA) between the SA (FA) values of two different 
conformational states. An important conclusion is that in certain 
cases the results for AFA(b,l) and ASA(b,l) converge rapidly at 
small values of b and /, which suggests that these functionals 
provide very good approximations for the correct AF and AS, 
respectively. The computational advantage of using FA and SA 

rather than F 8 lies in the fact that they can be estimated efficiently 
from relatively small samples. Furthermore, if the ranges of the 
angle-angle correlations (measured by b) of two states are com­
parable and the corresponding values of Aa* are not extremely 
different, the worst approximation, which ignores correlations and 
assumes homogeneous distribution of angles (b = 0, 1 = I), 
provides a reasonable estimate of the correct AF (and AS). This 
is also important since the above approximation requires the 
niinimal number of local states K' (i.e., the total number of angles), 
and therefore relatively small samples and very little computer 
memory are needed; thus, it can be applied efficiently to proteins 
of any size. 

The LS method could be used (together with the appropriate 
energy contributions) to compare approximately the free energy 
of binding of various ligands to a protein, where at this stage the 
contribution of solvent entropy is ignored.3 However, in principle, 
the entropy of diffusive systems such as a fluid can also be cal­
culated with the LS method, since it was originally developed for 
Ising and lattice gas models.31-33 This is planned for future work. 
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Abstract: Two fundamental cluster rearrangement mechanisms are investigated by ab initio calculations, namely the single 
diamond-square-diamond (DSD) process in B8H8

2" and the square-diamond-diamond-square (SDDS) process in C5H5
+. Geometry 

optimizations and frequencies are compared for the SCF and second-order Moller-Plesset (MP2) approximations with basis 
sets ranging in size from STO-3G to double-f plus polarization (DZP). The results are in good agreement with expectations, 
especially orbital symmetry selection rules, and enable us to compare the effects of electron correlation and polarization functions 
upon the energy and the character of the stationary points. The topology of the potential energy surface of C5H5

+ is studied 
in detail, demonstrating that the SDDS mechanism allows all versions of the structure to be accessed. 

I. Introduction 
In 1966 Lipscomb first proposed the diamond-square-diamond 

(DSD) process to account for rearrangements in boranes and 
carboranes.1 This mechanism is a cornerstone of recent theoretical 

(1) Lipscomb, W. N. Science 1966, 153, 373. 

developments based upon Stone's Tensor Surface Harmonic 
(TSH) theory which have provided powerful general orbital 
symmetry selection rules for such processes.2"5 These theories 

(2) Wales, D. J.; Stone, A. J. Inorg. Chem. 1987, 26, 3845. 
(3) Wales, D. J.; Mingos, D. M. P.; Lin, Z. Inorg. Chem. 1989, 28, 2754. 
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